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ABSTRACT
RNA-Seq is a widely-used method for studying the behavior of genes under di�erent biological

conditions. An essential step in an RNA-Seq study is normalization, in which raw data are adjusted
to account for factors that prevent direct comparison of expression measures. Errors in normal-
ization can have a signi�cant impact on downstream analysis, such as in
ated false positives in
di�erential expression analysis. An under-emphasized feature of normalization is the assumptions
upon which the methods rely and how the validity of these assumptions can have a substantial
impact on the performance of the methods. In this paper, we explain how assumptions provide
the link between raw RNA-Seq read counts and meaningful measures of gene expression. We ex-
amine normalization methods from the perspective of their assumptions, as an understanding of
methodological assumptions is necessary for choosing methods appropriate for the data at hand.
Furthermore, we discuss why normalization methods perform poorly when their assumptions are
violated and how this causes problems in subsequent analysis. To analyze a biological experiment,
researchers must select a normalization method with assumptions that are met and that produces
a meaningful measure of expression for the given experiment.
Key words: RNA-Seq; normalization; assumptions; di�erential expression; spike-in control; tran-

scriptome size

INTRODUCTION
The introduction of microarrays provided the ability to study many genes in an organism

under di�erent biological conditions, with a dramatic reduction in expense and time from previous
methods [1]. More recently, high-throughput sequencing has become an a�ordable and e�ective
way of examining gene behavior and has been applied to a wide range of biological studies. For
example, very speci�c questions about transcriptomes and splicing can now be addressed [2], and
the study of techniques for the analysis of high-throughput sequencing data continues to be a hot
topic, involving researchers from biology, statistics, and computer science.

High-throughput sequencing with RNA, commonly referred to as RNA-Seq, involves mapping
sequenced fragments of cDNA. In RNA-Seq, the RNA is fragmented and then reversed transcribed
to cDNA (or reverse transcribed then fragmented). These fragments are then sequenced, producing
reads which are aligned back to a pre-sequenced reference genome or transcriptome [2{4], or in some
cases assembled without the reference [3]. The number of reads mapped to a gene is used to quantify
its expression.

To convert raw read counts into informative measures of gene expression, normalization is
needed to account for factors that a�ect the number of reads mapped to a gene, like length [5], GC-
content [6], and sequencing depth [7]. Length and GC-content are within-sample e�ects, meaning
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that they a�ect the comparison of read counts between di�erent genes in a sample. Sequencing
depth, on the other hand, is a between-sample e�ect that alters the comparison of read counts
between the same gene in di�erent samples. Here we focus on between-sample normalization, which
is needed to account for technical e�ects (di�erences not due to the biological conditions of interest)
that prevent read count data from accurately re
ecting di�erences in expression [7]. In RNA-Seq, a
cDNA library is constructed and then a portion of the molecules are sequenced to produce reads [8].
Experimental variability, such as variability in the total number of molecules sequenced, can lead to
di�erent total read counts in di�erent samples; this is referred to as di�erences in sequencing depth,
and the total number of reads in a sample is the library size of that sample [9]. When one sample
has more reads than another, non-di�erentially expressed genes will tend to have higher read counts
in that sample [7] and so a correction is necessary. For applications requiring both between-sample
and within-sample normalization, performing both types of normalization may be necessary; for
example, Risso et al. recommend using within-sample GC-content normalization in combination
with between-sample normalization [6]. An additional issue when applying normalization methods
is the total number of reads; in this paper, we assume the samples are sequenced su�ciently deeply
for all normalization methods considered.

Many normalization schemes have been proposed to account for between-sample e�ects in RNA-
Seq data [9], and several attempts have been made to determine the best strategy [9{16]. However,
very little attention has been paid to the assumptions upon which the di�erent normalization
methods rely. Several authors have identi�ed situations in which a few highly expressed genes make
up a large proportion of the total reads [9,10,13], which could result in di�erences in distribution of
read counts among genes. Others have found cases in which most or all genes are up-regulated in
one condition [17{20]. These situations, especially a global shift in expression, violate assumptions
of many commonly-used methods and so result in errors in downstream analysis. Furthermore,
biological experiments in which assumptions are unwittingly violated may mean that there are 
aws
in comparisons of normalization methods and in the conclusions drawn from these experiments.
As we have evidence of violated assumptions in some biological experiments, but not the extent to
which assumptions are violated in others, it has been suggested that many prior conclusions are
incorrect and a reanalysis of published results is necessary [21].

The goal of this paper is to present normalization methods in the context of their assumptions,
and to evaluate the e�ect and importance of assumptions on the performance of di�erent normal-
ization methods. We believe that a focus on assumptions can aid in evaluating di�erent methods,
and in choosing an appropriate method given knowledge of which assumptions are reasonable to
make for the experiment at hand. With this in mind, we group between-sample methods by the
assumptions they rely on and their strategy for normalization. We explain the reason the assump-
tions are necessary and the result of using a method when the assumptions do not hold. Finally,
we examine previous research that aims to determine which normalization method is better from
the perspective of why some methods perform better than other in speci�c situations.

GENE EXPRESSION AND NORMALIZATION
The goal of normalization is for di�erences in normalized read counts to represent di�erences in

true expression. Normalization is correct when the relationship between normalized read counts is
correct. Given that the actual product of gene expression is never measured, we consider the true
expression of a gene to be the amount of mRNA/cell it produces.

This appears to be the de�nition commonly used in previous work, as prior research considers a
gene to be di�erentially expressed (DE) across di�erent biological conditions if there is a di�erence
in the amount of mRNA/cell it produces under these conditions. For example, authors discussing
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a global shift in expression talk about a global change in the absolute amount of RNA from a �xed
number of cells [22]. In this paper we view expression and di�erential expression in terms of absolute
quantities of mRNA/cell, and keeping this perspective in mind is important for understanding our
discussion of normalization methods and their assumptions. However, it is important to note that
other de�nitions of expression and di�erential expression are possible [23], and beginning with a
di�erent de�nition may change which methods are appropriate for a given RNA-Seq experiment.
For example, for certain biological experiments one might be interested in detecting di�erences in
mRNA/transcriptome (that is, a gene's proportion of mRNA out of all mRNA transcribed) rather
than mRNA/cell [23].

Considering di�erentially expressed genes is very helpful for understanding normalization. As
stated above, correct normalization will result in correct relationships between normalized read
counts. In terms of di�erential expression, this means that non-DE genes should on average have the
same normalized read counts across conditions, while DE genes should have normalized read counts
whose di�erences (ratios) across conditions represent the true di�erences (ratios) in mRNA/cell.
As with microarrays, a common use of RNA-Seq is to investigate the di�erential expression of
an organism's genes under di�erent biological conditions [2], but normalization is needed in any
RNA-Seq study where the relationship between normalized read counts must be correct, not just in
di�erential expression analyses. In this paper, for simplicity we restrict our examples to the most
basic case of two biological conditions, which will generally be referred to as A and B. Our results,
however, hold for any number of conditions.

Gene expression is measured with RNA-Seq using the number of reads aligned to each gene
under each biological condition [3]. However, a naive comparison of read counts for a given gene
under the di�erent conditions is problematic for two reasons. First, the number of reads aligned to
a given gene in a given sample is generally considered a random variable [24] (though non-random
events, such as inconsistent fragment ampli�cation or poor ampli�cation of certain sequences, can
impact the �nal read count), and so read count comparisons must take into account the variability
of these random variables. Second, the total number of reads can vary across samples [2], and so
a large di�erence in a gene's read count between di�erent conditions may simply be the result of
di�erential coverage, rather than of di�erential expression. It is the second problem that necessitates
normalization of read counts before di�erential expression analysis can be performed [2, 4].

Normalization is an essential step in an RNA-Seq analysis, in which the read count matrix is
transformed to allow for meaningful comparisons of counts across samples. With the advent of
RNA-Seq technology it was initially believed that normalization would not be necessary [3], but
normalization has been found to be indispensable for correct analysis of RNA-Seq data. Indeed,
Bullard et al. [10] found that the normalization procedure used in a di�erential expression pipeline
had the largest impact on the results of the analysis, even more than the choice of test statistic
used in hypothesis tests for di�erential expression.

Another reason normalization is required is that the proportion of mRNA corresponding to a
given gene may change across biological conditions. In the sample of molecules sequenced, the
number of molecules (and so by extension the number of reads) corresponding to a given gene is
tied to that gene's share of the population of molecules available for sequencing. Hence, when there
are a few genes that are highly expressed in only one of the conditions, the few genes will make
up a greater share of the total molecules and so a smaller fraction of the reads will be left for the
other genes [7]. This can cause the false appearance of di�erential expression for the non-DE genes,
and normalization is needed to account for this di�erence. A visualization of such a situation is
presented in Figure 1. Of the three genes, one is up-regulated while the other two are non-DE
(Figure 1(a)). The one highly expressed gene leads to di�erences in shares of the proportion of
mRNA for each gene (Figure 1(b)) which in turn causes di�erences in the share of reads aligned
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to each gene, even if the total number of reads is the same in each condition (Figure 1(c)). If
the di�erences in read share are not corrected by normalization (Figure 1(d)) then the apparent
fold change for every gene will be wrong (Figure 1(e)). Correct normalization, on the other hand,
equilibrates the read counts for the two non-DE genes (Figure 1(d)) and thereby leads to accurate
observed fold changes (Figure 1(e)).

As normalization methods have developed, it has become clear that initial approaches fail in
cases of a shift in expression for many or all genes [22]. In cases like Figure 1, a small number
of highly expressed genes creates the appearance that non-DE are di�erentially expressed, but the
false DE calls may be corrected by normalizing read counts so that the expression levels of non-DE
genes are equivalent. In contrast, in the case of a global shift in expression it may appear that
di�erentially expressed genes are non-DE or that up-regulated genes are down-regulated [22]. An
example is presented in Figure 2. All genes are up-regulated two-fold under condition B (Figure
2(a)), but roughly the same number of molecules are sequenced (Figure 2(b)). This conceals the
fact that one condition results in twice as much total expression, and the only di�erences in read
counts between the two conditions is due to technical variability (e.g. sequencing depth) (Figure
2(c)). Conventional normalization approaches account for the technical di�erences, resulting in the
same normalized read counts under each condition (Figure 2(d)). Conventional normalization fails
to re
ect the two-fold up-regulation under condition B, and examining the observed fold changes
(Figure 2(e)) it appears that neither gene is di�erentially expressed when in truth both are. A
further need for normalization is therefore in cases of global shifts in expression, in which it is
necessary to take into account the di�erences in overall expression between conditions.

To address the variety of needs for normalization, a corresponding variety of normalization
methods has been developed. To correctly normalize, each method requires one or more assump-
tions about the experiment and gene expression. Assumptions are necessary for converting read
counts into meaningful measures of expression. In the following sections we organize normalization
methods into groups of methods that rely on similar assumptions.

NORMALIZATION METHODS AND ASSUMPTIONS
Here we group normalization methods that have similar assumptions and approaches to normal-

ization. Short descriptions of the methods are provided; more detailed information on the method
speci�cs is available in the Supplementary Information.

Recall that for our purposes, a gene is di�erentially expressed across a set of conditions if that
gene produces di�erent levels of mRNA/cell under the di�erent conditions. For a normalization
method to work, the normalized read counts must be representative of the true mRNA/cell values.
That is, if a gene produces twice as much mRNA/cell under condition A as under condition B,
then the normalized read count for that gene should on average be twice as big under condition A
as under condition B. However, RNA-Seq, on the other hand, initially produces relative measures
of expression [25]. As shown in Figure 2, the number of reads aligned to a given gene re
ects the
sequencing depth and that gene's share of the population of mRNA molecules. We shouldn't expect
a gene with twice as much mRNA/cell to have twice the number of reads. To correctly normalize,
then, we must make some assumptions so that initial raw read counts can be converted into a
measure comparable across samples. Di�erent groups of normalization methods discussed here
take di�erent approaches, and so require di�erent assumptions to produce correctly normalized
values. These assumptions often deal with the total amount of mRNA/cell or the amount of
symmetry in the di�erential expression.

We say that di�erential expression is symmetric between two conditions when the number of
genes up-regulated in each condition is equal. Figure 3 demonstrates the four possible combinations
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Figure 1: One highly expressed gene. An experiment is performed with conditions A and B to compare
expression for the three genes (1, 2, and 3). (a) Gene 3 is two-fold up-regulated under condition B, while
the other genes are not di�erentially expressed; the quantity of mRNA/cell (in bp) is the same for Genes 1
and 2, but is twice as high for Gene 3 under condition B. (b) Because of the change in expression of Gene
3, the shares of mRNA in the cell are di�erent between conditions. Under condition A each gene gets 1/3,
whereas under condition B Gene 3 gets 1/2 while the other two get 1/4. (c) Di�erences in shares of mRNA
are re
ected in the shares of reads. Each sample has the same total number of reads, but the distribution
is di�erent between the conditions, matching the distribution of mRNA in (b). (d) When no normalization
is performed, there are apparent di�erences in read counts for all three genes. Total Count normalization
produces the exact same result as no normalization at all, since the total read count for each sample is the
same. In truth there is no di�erence in expression for Genes 1 and 2, and the relative count for Gene 3 should
be higher than found by no normalization or Total Count normalization. Correct normalization, therefore,
makes the read counts of the non-di�erentially expressed genes equivalent, which also makes the relative
expression of Gene 3 correct. (e) No normalization and Total Count normalization fail to equilibrate the
read counts of the non-DE genes, resulting in each gene appearing di�erentially expressed, and the truly DE
gene (Gene 3) having the wrong fold change. Correct normalization reveals no di�erence in expression for
the non-DE genes and the correct fold change for Gene 3.
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Figure 2: Global shift in expression. There are two genes, and an experiment is performed to compare
expression between condition A and condition B. (a) There is global up-regulation under condition B vs.
condition A, with both genes having twice the expression under condition B. Within each condition, the two
genes produce the same amount of mRNA/cell (measured in bp). (b) In the RNA-Seq experiment, the same
number of molecules are sequenced from each of the two samples. Proportionally, the mRNA composition
is the same under each condition, so the composition of molecules sequenced is also the same. Within each
condition, the two genes produce the same amount of mRNA (in bp) but Gene 2 is 4/5 the length of Gene
1, so must produce 5/4 the number of molecules that Gene 1 does. (c) Sequenced reads are aligned to the
reference genome and mapped to each gene. The distribution of reads is the same in each sample, but by
chance the sample for condition A happens to have more reads in total. (d) Normalization is performed,
which removes the di�erences in read count from technical variability, so the read count for each gene is
the same across conditions. (e) Because the normalized read counts are the same, the observed fold change
for each gene is 1, indicating no di�erential expression. However, genes are really twice as expressed under
condition B and so in truth we should see half the expression when comparing A to B.
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Figure 3: Di�erential expression and (a)symmetry. There are six genes, and two experimental condi-
tions. (a) Di�erential expression is asymmetric (3 up-regulated genes under condition A, 1 under condition
B). The total mRNA/cell (summed over the six genes) is the same under both conditions. (b) Di�erential
expression is asymmetric. The total mRNA/cell is di�erent (less total mRNA/cell under condition B). (c)
Di�erential expression is symmetric (2 up-regulated genes under each condition). The total mRNA/cell is
the same under both conditions. (d) Di�erential expression is symmetric. The total mRNA/cell is di�erent
(more total mRNA/cell under condition B).

of symmetry/asymmetry and same/di�erent total mRNA/cell. Figure 3 will be referenced to
illustrate situations in which assumptions are and are not met.

Normalization by Library Size
The normalization by library size aims to remove di�erences in sequencing depth simply by

dividing by the total number of reads in each sample [9].

Assumptions

Same total expression: the amount of total expression is the same under the di�erent exper-
imental conditions. That is, each condition has the same amount of mRNA/cell. Figure 3(a) and
Figure 3(c) show examples in which this assumption holds.

Methods

Total Count normalization [9] divides each read count by the number of reads in its sample.
The RPKM (reads per kilobase per million mapped reads) [26] method is essentially the same as
Total Count normalization, but with the added component of accounting for gene length as well.
FPKM [27] and ERPKM [12] are variants of RPKM.
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Motivation
After dividing by library size, the normalized counts re
ect the proportion of total mRNA/cell

taken up by each gene. If the total mRNA/cell is the same across conditions, this proportion
re
ects absolute mRNA/cell for each gene.

Normalization by Distribution/Testing
If technical e�ects are the same for DE and non-DE genes, then normalization could be done

by equilibrating expression levels for non-DE genes. This set of methods attempts to capture
information from non-DE genes. Normalization by distribution compares distributions (either of
read counts or some function of read counts) across samples; normalization by testing attempts to
detect a set of non-DE genes through hypothesis testing.

Assumptions
1. DE and non-DE genes behave the same: technical e�ects are the same for DE and

non-DE genes.

2. Balanced expression: there is roughly symmetric di�erential expression across conditions
(same number of up-regulated and down-regulated genes). This assumption holds in Figure
3(c) and Figure 3(d). Normalization by testing can tolerate a larger di�erence in number
of up- and down-regulated genes for higher proportions of DE than can normalization by
distribution (see Figure 6).

Methods
Normalization by distribution: Quantile normalization [28] forces the distribution of the nor-

malized data to be the same for each sample by replacing each quantile with the average (or median)
of that quantile across all samples. Other methods do not force all quantiles to be the same, but
instead focus on a speci�c quantile. Upper Quartile normalization [10] divides each read count
by the 75th percentile of the read counts in its sample. Median normalization [9] is essentially the
same, but uses the median rather than the 75th percentile. The DESeq normalization method [24]
�nds the ratio of each read count to the geometric mean of all read counts for that gene across all
samples (the denominator serving as a pseudo-reference sample [24]). The median of these ratios
for a sample, called the size factor, is used to scale that sample. This idea was expanded in the
Cu�Di� 2 software; Cu�Di� normalization calculates internal and external size factors using the
DESeq approach. The internal size factors are found for each sample by only considering other
samples performed under the same biological condition when taking the geometric mean, while the
external size factors are calculated after normalization by the internal size factors. The TMM
(Trimmed Mean of the M-values) [7] approach is to choose a sample as a reference sample, then
calculate fold changes and absolute expression levels relative to that sample. The genes are trimmed
twice by these two values, to remove di�erentially expressed genes, then the trimmed mean of the
fold changes is found for each sample. Read counts are scaled by this trimmed mean and the total
count of their sample. Note: the edgeR package [29] uses TMM normalization, and so TMM could
reasonably be called edgeR normalization instead. However, the name TMM seems to be more
commonly used in the literature, and so we use it here. Median Ratio normalization (MRN) [14]
is a method similar to TMM, with the goal of being more robust. In MRN, read counts are divided
by the total count of their sample, then averaged across all samples in a condition for a given gene.
This produces an average count-normalized value for each gene and each condition, and the median
of the ratios of these values between conditions is taken. The original counts are then normalized
by this median and their library size.
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Normalization by testing: PoissonSeq [30] uses an iterative process that alternates between
estimating a set of non-di�erentially expressed genes, and estimating the scaling factor for each
sample using that set. Given estimates of the scaling factor, expected values for the read counts can
be determined and non-DE genes are identi�ed using a �2 goodness-of-�t test. A similar iterative
strategy is implemented by DEGES (Di�erentially Expressed Gene Elimination Strategy) [11],
which alternates between calculating scaling factors from a set of genes identi�ed as non-DE, and
estimating which genes are non-DE using di�erential expression hypothesis testing.

Motivation
Non-DE genes should have, on average, the same normalized counts across conditions. Clearly,

we want to normalize in order to equilibrate the non-DE genes. If technical e�ects impact non-DE
genes and DE genes alike, then we can normalize all genes with the same normalization factor as
the non-DE genes. So, we need to compare the non-DE genes; assuming balanced expression means
we can estimate the di�erences in read counts between non-DE genes across samples.

Normalization by Controls
Controls are needed for normalization when the assumptions of other methods are violated. For

example, Figure 2 demonstrates how a global shift in expression can go undetected. When controls
are used, such as the negative controls illustrated in Figure 4, then it is possible to correctly
normalize by performing normalization on the controls. Since the controls are not a�ected by the
biological conditions but the same amount of controls/cell are present in each condition (Figure
4(a)) then di�erent numbers of control molecules are sequenced (Figure 4(b)). This leads to a share
of the reads re
ective of the share of mRNA for the control (Figure 4(c)). By normalizing on the
control, the correct levels of expression are seen (Figure 4(d)) and so accurate fold changes are
observed (Figure 4(e)).

Assumptions
1. Existence of controls: The controls needed for the experiment do in fact exist, and their ex-

pression behaves as expected (e.g., for negative controls they are non-DE under the conditions
of the experiment).

2. Controls behave like non-control genes: The technical e�ects for the controls in some
way re
ect the technical e�ects for all the genes, so that the controls can be used for normal-
ization.

Methods
Housekeeping genes: Housekeeping genes (HG) are genes which play a role in the basic

functions of a cell [31], and so are believed to be non-DE under the biological conditions of inter-
est [10, 31]. HG normalization assumes that these genes are truly not di�erentially expressed, and
furthermore that they are a�ected by technical e�ects the same way as DE genes. These house-
keeping genes must be identi�ed a priori, and the appropriate choice of housekeeping genes likely
changes across di�erent conditions and cell/tissue types. Normalization using housekeeping genes
can either equalize the read count of the gene (if one housekeeping gene) [10] or perform a conven-
tional normalization procedure on a set of housekeeping genes [9]. It is generally recommended to
use a set of housekeeping genes, as the use of one housekeeping gene is not robust.

Conventional normalization with spike-ins: A set of synthetic spike-in controls is available
through the ERCC [32], and these can be used instead of housekeeping genes. The use of spike-ins
with conventional methods assumes that the spike-ins are not a�ected by the biological conditions
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Figure 4: Use of negative controls with shift in expression. Two genes are investigated for di�erential
expression between condition A and condition B. A negative control is used for normalization (could be a
known non-DE gene or spike-in control). (a) Both non-control genes are up-regulated under condition B
vs. condition A, having twice the expression under condition B. As a negative control, the control has the
same expression under both conditions. (b) In the RNA-Seq experiment, the same number of molecules is
sequenced from each sample. As the control has a smaller share of the mRNA in condition B, there are
fewer control molecules in the sample for condition B. (c) Variability leads to di�erences in the total read
count for the two samples. The share of the reads aligned to the control is the share of mRNA from the
control. (d) The control should have the same expression in both conditions, so normalization is performed
to equalize the normalized read count for the control, resulting in normalized read counts that re
ect the
correct mRNA/cell levels. (e) Because normalized counts correctly re
ect mRNA/cell, the observed fold
change agrees with the truth.
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under investigation, and that they have the same technical e�ects as the real genes [33]. Conven-
tional normalization methods, such as Upper Quartile, may be applied to the spike-ins [33], as
with HG controls. The conventional normalization methods are applied only to the spike-ins, and
then used to calculate normalization factors for all genes. One approach is proposed by Lov�en et

al. [22], which uses cyclic loess normalization on the spike-ins (CLS). Spike-ins are added to RNA
in proportion to the number of cells from which RNA is extracted. Then, cyclic loess normalization
is performed on the RPKM values (more details can be found in the Supplementary Information).
The loess curve is �t using only the spike-ins, but used to adjust all RPKM values so that the other
genes are normalized with the spike-in information, which is not a�ected by di�erential expression.

Factor analysis of controls: To address perceived problems with the use of spike-ins, Remove
Unwanted Variation (RUV) [33] uses factor analysis to remove factors of unwanted variation
in RNA-Seq data. Using a set of negative control genes or samples, singular value decomposition is
used to estimate a matrix for the factors of unwanted variation. Normalization to remove the factors
of unwanted variation is then performed. It is divided into three sub-methods: RUVg, RUVs, and
RUVr. The two assumptions listed above indicate slightly di�erent things for the di�erent sub-
methods, and RUVr doesn't actually require controls (it is an adaptation of the RUV method to
be used when controls are not available) [33]. Here we list the meaning of the assumptions for each
of the three sub-methods:

1. RUVg. Existence of controls: negative controls exist (non-DE across conditions). Controls
behave like non-control genes: the factors of unwanted variation for the controls span the
same space as the factors for the entire set of genes.

2. RUVs. Existence of controls: negative controls exist (non-DE across conditions) and there
are also negative control samples (expression not related to biological condition). Controls
behave like non-control genes: the factors of unwanted variation for the controls span the
same space as the factors for the entire set of genes, and the factors of unwanted variation
are not correlated with experimental condition.

3. RUVr. Does not require existence of controls. Assumes that factors of wanted variation are
known (i.e., the design matrix) and the factors of unwanted variation are not correlated with
experimental condition.

Motivation
Controls should be non-DE across conditions and hence on average, normalized counts for

the controls should be the same across conditions. If technical e�ects impact controls like they
impact genes, then we can apply the adjustment for the controls to all genes. The reasoning for
normalization by controls is similar to normalization by distribution/testing, but in the former it
is assumed that an explicit set of controls is known, while in the latter we aim to capture the
information from non-DE genes without knowing beforehand which genes are non-DE.

IMPORTANCE OF THE ASSUMPTIONS
At �rst glance it makes sense that correcting for di�erences in sequencing depth can be done

simply by library size normalization, which works if the total amount of mRNA in each cell is the
same across experimental conditions. Then, a gene which produces the same amount of mRNA
under each condition will produce the same proportion of total mRNA in each condition. We thus
expect the same proportion of reads to be aligned to that gene under each condition, and Total
Count normalization gives us exactly the proportion of reads aligned to each gene. Likewise, dif-
ferences in expression correspond to di�erences in proportion of reads in the sample. However,
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di�erences in total mRNA/cell can lead to both failing to detect di�erentially expressed genes (Fig-
ure 2) and incorrectly calling non-DE genes di�erentially expressed (Figure 1) when normalization
by library size is performed in situations where total mRNA/cell is not constant.

On the other hand, normalization by distribution and by testing are impacted by di�erences
in the number of up-regulated vs. down-regulated genes, but not by the relative amounts of
mRNA/cell. The greater the disparity between the number of up-regulated genes and the number
of down-regulated genes under a given condition, the higher the asymmetry of the di�erential
expression under that condition. Both Figure 1 and Figure 2 show di�erences in total expression
(mRNA/cell) between the two conditions, but there is much more asymmetry in Figure 2 (that is,
100% of the genes are up-regulated). Accordingly, normalization by distribution and by testing can
handle di�erences in mRNA/cell in the case of a few highly expressed genes (small asymmetry), but
not a global shift in expression (large asymmetry). If there are only a few di�erentially expressed
genes, these DE genes will not do much to change the estimated normalization factor. For example,
the Upper Quartile normalization strategy compares the 75th percentile of read counts between
samples. If the 75th percentile of all the read counts is similar to the 75th percentile of the non-DE
read counts, this is a reasonable approach. The normalization statistic for all genes will be similar
to the normalization statistic for non-DE genes if there are only a few di�erentially expressed
genes. The two statistics will also be similar when there is a small proportion of asymmetry. When
di�erential expression is mostly symmetric, the values for di�erentially expressed genes should
more or less balance out on either side of the statistic for non-DE genes, so that the statistic for
all genes is close to the statistic for non-DE genes. A small proportion of asymmetry can allow
distribution/testing methods to tolerate higher proportions of di�erential expression.

Knowledge of the assumptions made by each normalization method allows for good predictions
of which biological experiments are suitable for each method. Normalization by library size should
work well when total mRNA/cell is equivalent across conditions, regardless of the amount of asym-
metry (Figure 3(a) and Figure 3(c)). On the other hand, normalization by distribution/testing
should generally work well when there is symmetry, regardless of di�erences in mRNA/cell (Figure
3(c) and Figure 3(d)). When there is both asymmetry and di�erent levels of total mRNA/cell
(Figure 3(b)), we expect both sets of methods to perform poorly.

Simulations
To demonstrate the e�ects of asymmetry and di�erent mRNA/cell in a controlled scenario, we

examined the performance of several normalization methods on simulated data (Figures 5, 6, 7,
and 8). Simulations were performed with two combinations of number of genes and number of
samples: 10000 genes and 4 samples (2 replicates per condition), and 1000 genes and 10 samples
(5 replicates per condition). Figure 5 and Figure 7 show the error in fold change estimates for the
di�erent normalization methods, while Figure 6 and Figure 8 show empirical error rates in detecting
di�erential expression. The use of simulation allows us to isolate the e�ects of asymmetry and
mRNA/cell, and to vary the amount of di�erential expression to see the e�ect of each combination
of (a)symmetry and same/di�erent mRNA/cell at each level of di�erential expression. We recognize
that real experiments contain additional sources of bias not present in our simulations. Such biases
are beyond the scope of this paper; as we are focused on the e�ects of normalization, we control
for other sources of error.

For the simulations, we chose methods which were representative and generally perform well in
the literature, as summarized in Table 2 (except for Total Count normalization, as all normalization
by library size methods perform poorly in the literature). We used Total Count, DESeq, TMM,
PoissonSeq, DEGES, and �nally Oracle normalization that uses the true normalization factor known
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from the simulation parameters. To measure how well the methods performed normalization, we
used a method similar to Maza et al. [14] and calculated the mean squared error (MSE) of the log
fold change for non-DE genes (Figure 5 and Figure 7), comparing each observed log fold change to
0. As these genes are not di�erentially expressed, if normalization is performed correctly then the
log fold change between samples of di�erent conditions should be close to 0. Oracle normalization
provides the baseline for the MSE under perfect normalization; methods which track closely with
the Oracle are performing well.

The results are the same regardless of the number of genes or samples, demonstrating that
the results do not depend on the number of genes or samples. Figure 5 and Figure 7 show the
MSE results of the simulations, con�rming that the methods perform as expected. Total Count
normalization follows the Oracle closely when there is the same total mRNA/cell, but diverges
quickly when there is di�erent mRNA/cell. DESeq, TMM, and DEGES perform well when there
is symmetry, for all proportions of di�erential expression. PoissonSeq does well under symmetry
until too high a proportion of di�erential expression is reached, at which point it diverges. This
is likely due to the fact that PoissonSeq normalization uses a set of genes of a �xed size for
normalization; when the proportion of di�erential expression is too high, the set necessarily contains
di�erentially expressed genes that skew the normalization estimate. When there is asymmetry,
the normalization by distribution/testing methods can tolerate a small proportion of di�erential
expression but eventually reach a break-down point.

The e�ects on downstream analysis of applying the di�erent normalization methods are shown
in Figure 6 and Figure 8, which show empirical false discovery rate (eFDR) measures for each
method after testing for di�erential expression (note: the downward trend in the Oracle eFDR is
due to the use of the Benjamini-Hochberg procedure to control FDR, which is conservative and
controls at a level directly related to the proportion of true null hypotheses, i.e. non-DE genes).
When methods normalize correctly, as shown in Figure 5 and Figure 7, the subsequent tests for
di�erential expression are able to control the false discovery rate in the absence of additional sources
of error. However, when normalization fails and the observed fold changes depart su�ciently from
the truth, the result is in
ated false positives. Our work illustrates how heavily analysis relies on
correct normalization, which in turn relies on assumptions. When the assumptions are violated,
normalization fails (Figure 5 and Figure 7) and as a result so does the downstream analysis (Figure
6 and Figure 8). As the �gures demonstrate, the optimal normalization methods heavily depend
on the biological circumstances, and so we can give no clear guideline for which normalization
method to use without knowing the conditions at hand. Additionally, we emphasize that the
simulations are designed to isolate the e�ects of incorrect normalization; analysis of real RNA-Seq
data will likely include additional biases that, if not accounted for, can lead to spurious results even
if normalization is correct. The eFDR numbers given in the simulations should not be treated as
predictions of what the true FDR will be in an experimental setting, but rather provide a way to
compare di�erent methods with all other factors being equal. As the methods generally perform
similarly for a small proportion of di�erential expression, under these conditions the choice of
method is less important. However, as studies have demonstrated the existence of global shifts in
expression [17{20], we believe that the assumption of a small proportion of di�erential expression
can be dangerous. Hence it is important to consider the performance of the di�erent methods for
a wide range of di�erential expression.

Simulation Details
To assess the downstream results of violating the assumptions of di�erent normalization meth-

ods, simulations were run in which the average mean squared error (MSE), on non-DE log fold
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Figure 5: Impact of amount of asymmetry and amount of mRNA/cell on fold change estimates,
10000 genes and 4 samples. These plots show the average log fold-change MSE for non-DE genes of several
methods. Simulated data is used, with 10000 genes and two replicates per condition, and varying proportions
of di�erential expression (5% to 95%). Genes simulated to be non-DE should have an observed log fold-change
close to 0; the MSE is thus calculated by averaging the squared observed log fold-changes for each non-DE
gene (treating the true log fold-change as 0). Because of variability in the generation of read count data, the
observed log fold-change will in general not be exactly 0, so the Oracle normalization method (normalizing
the data with the correct normalization factors given the simulation) serves as a baseline. Methods with
MSEs that closely follow those of Oracle normalization are doing well. Asymmetric di�erential expression
was simulated as 75% of the set of DE genes up-regulated in one condition and 25% up-regulated in the
other. Under symmetric di�erential expression, 50% of DE genes are up-regulated in each condition. For
simulations with the same mRNA/cell, non-DE genes had the same proportion of reads in each condition;
simulations with di�erent mRNA/cell resulted in non-DE genes having di�erent shares of the reads in the
di�erent conditions.
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Figure 6: Impact of amount of asymmetry and amount of mRNA/cell on error control, 10000
genes and 4 samples. These plots show the average empirical FDR of several methods on simulated
data with varying proportions of di�erential expression (5% to 95%). The simulations are performed with
two conditions, with 10000 genes and two replicates per condition. Asymmetric di�erential expression was
simulated as 75% of the set of DE genes up-regulated in one condition and 25% up-regulated in the other.
Under symmetric di�erential expression, 50% of DE genes are up-regulated in each condition. For simulations
with the same mRNA/cell, non-DE genes had the same proportion of reads in each condition; simulations
with di�erent mRNA/cell resulted in non-DE genes having di�erent shares of the reads in the di�erent
conditions. The black dashed line is at 0.05, the nominal FDR using the Benjamini-Hochberg adjustment.
Deviations of the oracle value from the nominal value (starting above 0.05 and falling below as the proportion
of DE increases) are a result of DESeq2 hypothesis testing and the conservativeness of Benjamini-Hochberg.
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Figure 7: Impact of amount of asymmetry and amount of mRNA/cell on fold change estimates,
1000 genes and 10 samples. These plots show the average log fold-change MSE for non-DE genes of several
methods. Simulated data is used, with 1000 genes and 5 replicates per condition, and varying proportions of
di�erential expression (5% to 95%). Genes simulated to be non-DE should have an observed log fold-change
close to 0; the MSE is thus calculated by averaging the squared observed log fold-changes for each non-DE
gene (treating the true log fold-change as 0). Because of variability in the generation of read count data, the
observed log fold-change will in general not be exactly 0, so the Oracle normalization method (normalizing
the data with the correct normalization factors given the simulation) serves as a baseline. Methods with
MSEs that closely follow those of Oracle normalization are doing well. Asymmetric di�erential expression
was simulated as 75% of the set of DE genes up-regulated in one condition and 25% up-regulated in the
other. Under symmetric di�erential expression, 50% of DE genes are up-regulated in each condition. For
simulations with the same mRNA/cell, non-DE genes had the same proportion of reads in each condition;
simulations with di�erent mRNA/cell resulted in non-DE genes having di�erent shares of the reads in the
di�erent conditions.
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Figure 8: Impact of amount of asymmetry and amount of mRNA/cell on error control, 1000
genes and 10 samples. These plots show the average empirical FDR of several methods on simulated
data with varying proportions of di�erential expression (5% to 95%). The simulations are performed with
two conditions, with 1000 genes and 5 replicates per condition. Asymmetric di�erential expression was
simulated as 75% of the set of DE genes up-regulated in one condition and 25% up-regulated in the other.
Under symmetric di�erential expression, 50% of DE genes are up-regulated in each condition. For simulations
with the same mRNA/cell, non-DE genes had the same proportion of reads in each condition; simulations
with di�erent mRNA/cell resulted in non-DE genes having di�erent shares of the reads in the di�erent
conditions. The black dashed line is at 0.05, the nominal FDR using the Benjamini-Hochberg adjustment.
Deviations of the oracle value from the nominal value (starting above 0.05 and falling below as the proportion
of DE increases) are a result of DESeq2 hypothesis testing and the conservativeness of Benjamini-Hochberg.
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changes, and average empirical false discovery rate (eFDR) were computed for di�erent propor-
tions of di�erential expression (proportion of genes which are truly DE), amounts of asymmetry,
and relative amounts of mRNA/cell. The code for the simulations and the plots of the results can
be found at (https://github.com/ciaranlevans/rnaSeqAssumptions), and was adapted from the R
code used in the simulations of Law et al. [34].

For each of the two combinations of number of genes and number of samples, four sets of
simulations were performed, one for each combination of asymmetry vs. symmetry and same
mRNA/cell vs. di�erent mRNA/cell. In each simulation, read count data was generated then
normalized according to one of six di�erent methods: DEGES, DESeq, Oracle (normalization
with the true scaling factors, used for benchmarking other normalization methods), PoissonSeq,
TMM, and Total Count. The normalization methods were selected to represent di�erent types of
normalization: by library size (Total Count), by distribution (DESeq and TMM), and by testing
(PoissonSeq and DEGES). DESeq and TMM were chosen to represent normalization by distribution
methods as they are widely studied and generally perform well relative to other methods (Table 2).
Simulated RNA-Seq data was generated, then each normalization method was performed. After
normalization, two normalized columns of the read count matrix (one from each condition) were
compared to produce log fold changes for the non-DE genes. These observed log fold changes should
be close to 0, so the MSE was calculated by averaging the squared log fold changes for the non-DE
genes. Di�erential expression hypothesis testing was performed on the data for each normalization
method. Testing was done separately from normalization, and was performed with the DESeq2 [35]
package after normalization with each method (the data was not re-normalized with DESeq2). As
in DESeq2, and as is common in di�erential expression studies, p-values were adjusted using the
Benjamini-Hochberg procedure for FDR control [36]. Using the adjusted p-values, and knowledge of
which genes were simulated to be di�erentially expressed, the average eFDR (observed proportion
of false discoveries out of all discoveries) was calculated across 50 repetitions.

Simulations begin by creating initial proportions of expression, representing the proportion of
the total expression for each gene and each sample, with 10000 genes and 4 samples (2 samples per
condition), or 1000 genes and 10 samples (5 samples per condition). A random subset of genes is
chosen to be di�erentially expressed, with the number determined by the speci�ed proportion of
di�erential expression.

Asymmetry, same mRNA/cell: Di�erential expression is asymmetric (more genes up-
regulated under one condition than the other), but the absolute expression is the same for each
condition. 75% of DE genes were 2-fold up-regulated under condition A, and 25% were 4-fold
up-regulated under condition B.

Asymmetry, di�erent mRNA/cell: Di�erential expression is asymmetric, and the absolute
expression is di�erent under the di�erent conditions. 75% of DE genes were 2-fold up-regulated
under condition A, and 25% were 2-fold up-regulated under condition B.

Symmetry, same mRNA/cell: Di�erential expression is symmetric (same number up-
regulated under each condition), and the absolute expression is the same for each condition. 50%
of DE genes were 2-fold up-regulated under condition A, and 50% were 2-fold up-regulated under
condition B.

Symmetry, di�erent mRNA/cell: Di�erential expression is symmetric, but the absolute
expression is di�erent under the di�erent conditions. 50% of genes are 4-fold up-regulated under
condition A, and 50% are 6-fold up-regulated under condition B.

Experimental Data
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In addition to a simulation study, we examined the performance of normalization methods on
RNA-Seq data from the SEQC project [37], in which the SEQC/MAQC-III consortium studied
RNA-Seq technology across di�erent platforms and alignment methods. We used sequencing data
from the Australian Genome Research Facility, performed on the Illumina HiSeq 2000 platform
and mapped with the AceView annotations. The SEQC project collected data for four di�erent
samples A, B, C, and D, with many replicates per sample [37]. Following [33] and [10], for tests of
di�erential expression we performed comparisons between samples A and B (from Agilent's UHRR
cells and Life Technologies' HBRR cells, respectively). Data was obtained from the seqc R package
that is available through Bioconductor [37]. Our code for analysis of the SEQC data can be found
at (https://github.com/ciaranlevans/rnaSeqAssumptions).

Additionally, the SEQC data includes TaqMan qRT-PCR measurements on about 1000 genes
[37]. PCR data is often used to determine \true" di�erential expression and assess false positives
and false negatives in an RNA-Seq analysis; for example, [10] and [33] both use SEQC PCR data
to evaluate performance of di�erential expression testing. For the purposes of this section we will
use PCR data as a benchmark for assessing di�erential expression calls. However, we note that the
practice of treating PCR as a \gold standard" may not always be justi�ed: there has been concern
over possible errors in PCR data [38], and PCR data does not necessarily detect global shifts in
expression.

The full SEQC qRT-PCR data contains 1044 genes. We matched the PCR data with SEQC
RNA-Seq data, selecting genes which were represented in both data sets with enough information,
and removed duplicated genes. This results in 733 unique genes with both RNA-Seq and PCR
measurements. Following the examples of [33] and [10], we divide the PCR-validated genes into
groups of \non-DE", \no-call", and \non-DE" based on their absolute average log fold change
(respective ranges are < 0:2, [0:2; 0:1], and > 1).

After selecting genes to use in our analysis, we compared the PCR expression measures between
samples A and B by computing log fold changes of the average expression. The distribution of the
mean log fold changes (LFCs) is symmetric about 0 (Figure 9), with 401 genes expressed more in
sample A (LFC > 0) and 332 expressed more in sample B (LFC < 0). The PCR data identi�ed 268
di�erentially expressed genes with higher expression in sample A (LFC > 1), and 203 di�erentially
expressed genes with higher expression in sample B (LFC < �1). Approximately the same number
of up-regulated genes are observed in each condition, indicating that di�erential expression is quite
symmetric. Additionally, the distribution has a similar shape on each side of 0 (Figure 9). There
is no reason to suspect that there are systematic di�erences between the amounts of mRNA/cell
produced by genes with higher expression in sample A vs. higher expression in sample B, and so
having the same distributional shape suggests that each sample produces approximately the same
mRNA/cell.

Symmetric expression and the same mRNA/cell indicates that all normalization methods should
perform approximately equivalently, as illustrated by the simulations. Using each normalization
method from the simulations (DEGES, DESeq, PoissonSeq, TMM, and Total Count), we performed
normalization and di�erential expression testing, using the DESeq2 package for the hypothesis
testing. To compare the di�erent normalization methods, we compared the results of di�erential
expression testing to the calls from the PCR analysis.

By varying the signi�cance cuto� for the DESeq2 p-values, we can change which genes are called
di�erentially expressed from the RNA-Seq analysis. That is, if the level of signi�cance is set at
0.05, there will be fewer false positives (and more false negatives) than if the level of signi�cance is
set at 0.1. We then compared the RNA-Seq calls to the \true" PCR calls to create ROC curves for
each method (Figure 10), with the no-call genes ignored when making the ROC curves. A steep
initial slope of the ROC curve indicates a large gain in sensitivity (ability to correctly determine DE
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genes, i.e. true positives) for a small loss in speci�city (ability to correctly determine non-DE genes,
i.e. true negatives). Methods perform better when, for a given level of speci�city, they have higher
sensitivity. Graphically, this corresponds to the top left in the ROC graph. In the case analyzed
here we expect each method to perform similarly; DESeq, Total Count, TMM, and DEGES do so,
but PoissonSeq performs somewhat worse than the others, with an ROC curve noticeably below
the rest.

For further comparison with our simulations, we calculated empirical false discovery rates for
each method. In our simulations, we had two or �ve replicates for each condition, but in the SEQC
data there are 64 replicates for sample A and sample B. To make eFDR calculations comparable
with our simulations, we randomly selected two replicates from sample A and two from sample
B, then tested for di�erential expression (using the BH procedure at level 0.05) and calculated an
empirical false discovery rate using the PCR data as a benchmark. Selecting two replicates and
testing for DE was repeated 100 times to get an average eFDR for each normalization method.
We then performed the same procedure with random selections of �ve replicates from sample A
and �ve from sample B. The results are displayed in Table 1. Note that the eFDR calculations
treat no-call genes as di�erentially expressed, so the exact values in Table 1 are likely not a true
representation of the FDR. Rather, we are interested in the relationship between the values for
each method. We note that, consistent with our simulations, all methods are approximately equal
with a slightly higher empirical FDR for PoissonSeq, and furthermore that empirical FDR increases
when more samples are used in the di�erential expression testing.

Initial ROC analysis was performed using a full set of 733 genes, for which di�erential expression
is approximately symmetric. To evaluate the di�erent normalization methods under asymmetric
di�erential expression, we took a subset of 619 PCR-validated genes such that 75% of DE genes
were up-regulated (according to PCR) in sample A, and the remaining 25% were up-regulated in
sample B (the DE genes made up about 57% of the 619 genes in the subset). As illustrated by the
simulations, we expect DEGES, DESeq, PoissonSeq, and TMM to perform worse if the proportion
of di�erential expression is high enough. The performance of Total Count normalization depends
on the relative levels of mRNA/cell, which we are unable to de�nitively measure with the RNA-Seq
or PCR data. However, under our previous assumption that production of mRNA/cell is unrelated
to whether a gene is up-regulated or down-regulated in sample A, we would expect some di�erence
in mRNA/cell when there is asymmetric di�erential expression.

Using the subset of genes with asymmetric di�erential expression, we again performed an ROC
curve analysis (Figure 11). As expected, DEGES, DESeq, PoissonSeq, and TMM each perform
worse with asymmetric di�erential expression than with symmetric di�erential expression (each has
a lower ROC curve in Figure 11 than in Figure 10). Total Count normalization also performs worse
with the asymmetric di�erential expression, but does noticeably better than the other methods.

Our simulations help illustrate that with symmetric di�erential expression and similar mRNA/cell,
performance of each normalization method should be approximately equivalent. This is indeed what
we observe with the SEQC PCR-validated data, which appears to occur under those conditions.
Based on our analysis of the assumptions of each method, backed by our simulation data, we expect
di�erences in performance under di�erent conditions. For example, many methods should perform
worse under asymmetric di�erential expression, which was observed in the SEQC data by taking
a subset of genes to force asymmetric expression. We are not aware of any large PCR-validated
dataset which has strongly asymmetric expression and/or a global shift in expression in the full
dataset, without taking subsets (though as discussed above, it is not clear that PCR data could
detect a global shift).
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Figure 9: Distribution of qRT-PCR mean log fold change. The histogram shows the distribution of
the log fold change comparing the average PCR measures of expression between SEQC samples A and B in
each gene. The distribution is very symmetric around 0, indicating that each sample has the same number
of up- and down-regulated genes. Additionally, the shape of the distribution is very similar on both sides of
0, suggesting that there are similar amounts of mRNA/cell for each sample.
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Figure 10: ROC curves for each normalization method using SEQC data. This �gure displays the
ROC performance of each method using RNA-Seq data for 733 PCR-validated genes. False positives and
false negatives are determined by the PCR validation, and no-call genes are ignored in the construction of
the ROC curves.
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ROC Curves for DE Testing, Asymmetry
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Figure 11: ROC curves for each normalization method using SEQC data. This �gure displays the
ROC performance of each method using RNA-Seq data for 619 PCR-validated genes. False positives and
false negatives are determined by the PCR validation, and no-call genes are ignored in the construction of
the ROC curves. The genes are a subset chosen for asymmetric di�erential expression, so that 75% of DE
genes are up-regulated in sample A and 25% are up-regulated in sample B.

DESeq2 Total Count EdgeR DEGES PoissonSeq
2 samples 0.0552 (0.0042) 0.0489 (0.0048) 0.0521 (0.0043) 0.0532 (0.0052) 0.0730 (0.0049)
5 samples 0.0714 (0.0024) 0.0687 (0.0028) 0.0700 (0.0030) 0.0699 (0.0027) 0.0822 (0.0024)

Table 1: Empirical FDR for SEQC RNA-Seq data with two and �ve replicates per condition.
Two replicates from sample A and two from sample B were randomly chosen and used to test for di�erential
expression. The empirical FDR was then calculated, and the process repeated 100 times. The procedure was
also performed using �ve replicates from sample A and �ve from sample B. The average eFDR results are
displayed in this table, with the standard deviation of the eFDRs across 100 repetitions given in parentheses.
Note: the empirical FDR is calculated as the ratio of the number of non-DE genes (as determined by PCR)
which are called di�erentially expressed by RNA-Seq testing to the total number of genes called di�erentially
expressed by RNA-Seq testing, e�ectively treating "no call" PCR genes as di�erentially expressed.
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EVALUATION OF METHODS AND ASSUMPTIONS
Several papers have investigated the di�erent normalization methods described in the previous

section. Table 2 summarizes these comparisons by giving approximate rankings of the methods
evaluated in each comparison. Here we expand on these rankings to remark on several key ideas.

Di�erences in mRNA/cell result in poor performance of library size normalization.
As shown in Table 2, in many comparisons Total Count and RPKM/FPKM perform worse than all
other methods, and several authors expressly recommend against its use [9]. A likely cause of this
is that in these evaluations, the assumption required for library size normalization (same amount of
mRNA/cell) is violated. For example, Dillies et al. [9] observed that a few highly expressed genes
had a large share of the read counts in M. musculus data they compared. Bullard et al. [10] and
Lin et al. [13] reported similar �ndings. Bullard saw 50% of the reads concentrated in 5% of the
genes, and Lin found 50% of the reads in 45 genes for male 
ies and 186 genes for female 
ies.
With such a large proportion of the reads aligned to a small fraction of the genes, if these genes
are di�erentially expressed it is likely that there will be di�erent amounts of mRNA/cell across the
conditions, and Bullard et al. [10] did observe that the highly expressed genes were di�erentially
expressed.

DESeq and TMM generally perform well, but validity is not certain. Dillies et al. [9],
for example, note that DESeq and TMM are the only methods that perform well both with the
ability to detect di�erentially expressed genes, and with controlling false positives. This supports
the conclusion of Bullard et al. [10], who concluded that normalization has the biggest impact on
detection of di�erentially expressed genes.

Given that several authors have found that a few highly expressed genes have a large share of
total expression [9,10,13] and these genes may be di�erentially expressed, it is clear that assuming
the same amount of mRNA/cell is not always reasonable. The good performance of DESeq and
TMM in these studies suggests that perhaps their assumptions (DE and non-DE genes behave the
same, balanced expression) are fairly reasonable, or at least not too violated, for the data analyzed
in the comparisons. However, it is possible that for the real data analyzed in these comparisons there
is a global shift in expression that is not picked up by these normalization methods. For example,
a global shift has been observed in DE analysis with low and high c-Myc conditions [19, 20], and
this shift was undetected without the use of spike-in controls [22]. Other researchers [17, 18] have
found similar global up-regulation when using spike-ins, and it has been suggested that such shifts
were not detected by previous research due to lack of proper normalization [18]. Even qRT-PCR,
often treated as a \gold standard" for evaluating the performance of DE analysis methods, might
not be able to detect a global shift without controls. Normalization for qRT-PCR often relies
on housekeeping genes [10, 39, 40]. In the absence of non-DE genes, as occurs with a global shift
in expression, qRT-PCR results might not be accurate. Furthermore, the use of PCR as a gold
standard for evaluation of normalization methods has been called into question, as despite being
highly accurate, PCR can contain errors [38]. Hence, for methods which normalize by distribution
or by testing, it is di�cult or impossible to know whether their assumptions have been met without
additional information.

Potential lack of housekeeping genes. The possible absence of housekeeping genes poses
a problem for HG normalization of RNA-Seq data as well as PCR data. While Bullard et al. [10]
found that HG normalization performed equivalently to UQ, the housekeeping gene they used
(POLR2A) was selected based on previous studies and they caution that such information may
not always be available. Dillies et al. [9] also selected housekeeping genes from previous research,
and state that one cannot be certain housekeeping genes will always be non-DE. As mentioned
above, several authors have found global shifts in expression which would leave few, if any, non-DE
housekeeping genes for use in normalization [17{20].
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Paper
Goal

Evaluation Criteria Approximate Ranking

Global
compare

Equiv. normalized count distribution between replicates
(real data); variance of normalized counts within condition
(real data); equiv. expression of housekeeping genes (real
data); agreement on DE calls (real data); false positives
and power (simulation). [9]

DESeq & TMM
UQ & Med
Q
RPKM & TC

Introduces
UQ

DE detection compared to qRT-PCR (ROC curves) (real
data); variability between replicates after normalization
(real data); bias in fold-change estimation compared to
qRT-PCR (real data). [10]

UQ
Q
TC

Introduces
MRN

False positives, false negatives, and power (simulation);
MSE of expression fold-change estimates (simulation);
number of DE calls and agreement on DE calls (real data).
[14]

MRN
DESeq & TMM
TC
UQ & Med
FPKM

Global
compare

Equiv. normalized count distribution between replicates
(real data); variance of normalized counts within condition
(real data); agreement on DE calls (real data); variability of
results under di�erent �ltering techniques (real data). [13]

DESeq
TMM
UQ, Med, & Q
RPKM & TC
(RUVg considered, but as-
sumptions not met)

Global
compare

Correlation between normalized counts and qRT-PCR data
(real and simulated data). [12]

All were equivalent
(DESeq, Med, Q, RPKM
and ERPKM, TMM, UQ)

Global
compare

Bias and variance in fold change estimation (compared to
housekeeping genes) (real data); sensitivity and speci�city
in DE calls (using genes believed to be DE and non-DE)
(real data); prediction of DE genes (real data); agreement
on DE calls (real data). [16]

DESeq
PS
Q
UQ
TMM

Global
compare

Clustering of normalized counts agrees with condition (real
data); correlation between fold change estimates and qRT-
PCR fold changes (real data). [15]

All were equivalent
(DESeq, PS, UQ, TMM,
Q, Cu�Di�)

Introduces
DEGES

ROC curves and AUC (real and simulated data). [11] DEGES strategy using
a normalization method
generally performed bet-
ter than that method by
itself

Introduces
CLS

Observed fold change for normalized data (real data). [22] CLS
RPKM

Introduces
RUV

PCA (real data); variance and distribution of normalized
data (real data); distribution of p-values (real data); clus-
tering and proportion of reads mapping to spike-ins (real
data); MA plots (real data); ROC curves (real data); com-
parison with qRT-PCR (real data). [33]

RUV
(UQ, CLS, RPKM, TMM,
DESeq, & Q)

Table 2: Literature comparing normalization methods. Several papers which include comparisons
of DE assumption normalization methods are summarized here. Short descriptions of the criteria used to
evaluate the normalization methods are provided, and the �nal results of the paper are condensed into an
approximate ranking of the methods considered (best performing methods at the top). These rankings are
not explicit in all papers and for some have been inferred from the paper's discussion of the strengths and
weaknesses of the di�erent methods. Abbreviations: UQ = Upper Quartile, Med = Median, Q = Quantile,
TC = Total Count, MRN = Median Ratio, PS = PoissonSeq, CLS = Cyclic Loess on Spike-ins.
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External controls may be needed. In the case of a global shift in expression, the assump-
tions are violated for normalization methods that do not rely on external controls. Global up-
regulation necessarily leads to di�erent amounts of mRNA/cell (library size normalization), highly
asymmetric expression (distribution/testing normalization), and an absence of non-DE genes (HG
normalization). Without the use of external controls, it is possible that many experiments have
resulted in incorrect conclusions [21]. Normalization with spike-in controls attempts to rectify the
problems of asymmetry, by relying on genes/spike-ins which should have the same expression under
the di�erent conditions.

Mixed performance of spike-ins. As we have seen, these methods come with their own set
of assumptions, and it is not clear that these assumptions can always be trusted. In an assessment
of ERCC spike-in controls, Jiang et al. found that only small fractions (0:5% and 0:01%) of spike-in
reads were incorrectly aligned to the actual genome of the organisms in their experiment (Drosophila
and humans) [32]. This indicates that as desired, there will be little error introduced into the read
counts by the controls. Furthermore, Jiang et al. found a linear relationship between the amount
of spike-in and read count [32], which is evidence that the spike-in read counts are representative
of expression level. However, Risso et al. [33] found violations of both assumptions necessary for
basic spike-in normalization (spike-ins are non-DE across conditions and have the same technical
e�ects as genes), and Qing et al. [41] found that read counts for the spike-ins depended in part on
the mRNA enrichment protocol used in the experiment.

Recommendations: appropriate method depends on DE de�nition and assump-
tions. Di�erent circumstances call for di�erent normalization methods. Correct normalization
should cause non-DE genes to have the same (expected) normalized read count across conditions.
This requires a de�nition of di�erential expression. In this paper, we de�ned di�erential expression
in terms of di�erences in mRNA/cell across conditions, and it appears that this is the de�nition used
in previous research evaluating normalization methods. Consequently, the majority of the commen-
tary and recommendations presented here is in the context of mRNA/cell di�erential expression.
However, other de�nitions of di�erential expression are possible and may be appropriate/necessary
in certain conditions [23]. One alternative is to de�ne a gene as di�erentially expressed if its share
of mRNA in the transcriptome is di�erent across conditions; this bases di�erential expression on
relative, rather than absolute, measures of expression. The mRNA/transcriptome de�nition may
be appropriate in some circumstances: Ignatov et al. [42] performed an experiment which found
down-regulation of every gene when using the mRNA/cell de�nition, so they chose instead to look
for di�erences in per transcriptome expression.

Choosing a normalization method depends on the de�nition of di�erential expression. For exam-
ple, library size normalization generally performs poorly when de�ning DE in terms of mRNA/cell,
but should produce exactly the desired measure when de�ning DE in terms of mRNA/transcriptome.
Hence, choosing a normalization method for an RNA-Seq experiment must begin with choosing a
de�nition of di�erential expression. While one de�nition may be less often used than the other, it
is necessary to make a choice between the two de�nitions, and the choice is particularly important
if there is a possibility of a global shift in expression.

Once di�erential expression is de�ned, the next step is to determine which assumptions are
appropriate for the experiment at hand, and then choose a method that follows those assumptions.
Assumptions of each method depend on the de�nition of di�erential expression; in this paper, we
consider the assumptions necessary for each method under mRNA/cell di�erential expression. How-
ever, these assumptions will not be the same for mRNA/transcriptome di�erential expression. For
example, the assumption for library size normalization discussed above is that the total mRNA/cell
is the same under each condition. This assumption is necessary for the relative measures of ex-
pression obtained via library size normalization to be valid measures of absolute expression. If a
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relative de�nition of DE is used instead, such as mRNA/transcriptome, then it is not necessary to
assume equivalent total mRNA/cell across conditions.

If spike-ins can be trusted, they are important to use in normalization because there may be
previously unknown shifts in expression that cannot be detected without controls, and housekeeping
genes do not seem a reliable choice for controls. RUV aims to address the shortcomings of spike-ins,
so may be a good method to use when spike-ins are available.

However, there are situations in which spike-in methods are not an option. Coate and Doyle [23]
note that application of spike-in methods requires the ability to count the number of cells used in
RNA extraction, and cell counting is not possible in some tissue types. In these cases, normalization
by distribution/testing appears to be the best option, and DESeq especially has generally been
shown to perform well.

CONCLUSION
The use of RNA-Seq experiments to study organisms' genomes is becoming ubiquitous, and

the explosion in the use of sequencing technology has led to a related explosion in the develop-
ment of statistical methods for processing and analyzing RNA-Seq data. As previous research has
demonstrated [10], proper normalization is an essential step in the analysis pipeline. We have seen
that incorrect normalization can result in downstream errors such as in
ated false positives. The
need for normalization arises from the inherent variability in the collection of RNA-Seq data, and
a variety of normalization methods have been devised to combat this variability. As we have seen,
the literature has not reached a consensus on which normalization method to use.

Both the simulations and the real data allow us to understand the e�ects of symmetric vs asym-
metric di�erential expression and the e�ects of di�ering amounts of mRNA/cell. The simulations
isolated all other conditions and allowed for a direct comparison between methods. The real data
told the same story as the simulated data with respect to the (a)symmetry of the di�erential ex-
pression, validating the more complete simulation results. In particular, it is worth noting that the
performance of Total Count normalization depends on the amount of mRNA/cell and not di�eren-
tial expression symmetry. Indeed, Total Count normalization out performs the other normalization
methods when the data are asymmetric with same mRNA/cell, though we do not know how often
such conditions actually occur in real, full data.

Each normalization procedure relies on assumptions, and when violated the procedures lead to
incorrect results. For each assumption, there is evidence that it may not hold in some experiments.
Part of an analysis of RNA-Seq data requires choosing a normalization procedure, and keeping the
assumptions of each method in mind can help to make the appropriate choice for the experiment
at hand. However, there may be many situations in which the validity of any assumption is
unknown for the given experiment. In such cases, normalization with external controls would be
the appropriate choice if the external controls can be trusted. Unfortunately, several authors have
found problems with spike-ins and so propose additional methods to handle these issues. It is clear
that spike-ins are necessary in some circumstances, and we hope that as research progresses their
performance will improve.

To the best of our knowledge, there does not exist an extensive analysis of published data
which evaluates the assumptions of normalization methods. Given the potential violations to
each normalization assumption, knowledge of the extent to which each assumption holds in a
given experiment would be instrumental in helping to choose a normalization method for RNA-Seq
analysis. There is no clear way to perform such an evaluation, however, considering that violations
of assumptions (such as a global shift) may go undetected without additional information and the
requisite information may not be present in the original experiment.
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SUPPLEMENTARY INFORMATION
Details on Normalization

Here we provide more speci�cs on the normalization procedures mentioned in the body of the
text.

Total Count: Total count normalization deals with the most observable di�erence in RNA-Seq
samples: their library sizes. In total count normalization [9], read counts are normalized by dividing
each count by the total number of reads in its sample. The goal of total count normalization is to
account for di�erences in library size by simply dividing by library size in each sample.

RPKM: RPKM (reads per kilobase per million mapped reads) normalization [26] is an adap-
tation of total count normalization that attempts to normalize by gene length as well as the total
number of reads in each sample. As the name suggests, in RPKM normalization each read count
is normalized by dividing by the number of reads in the sample (in millions) and the gene length
(in kilobases).

FPKM: FPKM (fragments per kilobase per million mapped fragments) normalization [27] is
almost exactly the same as RPKM normalization, with the change of using cDNA molecules rather
than RNA reads; each cDNA molecule corresponds to two reads, each starting at a di�erent end of
the fragment.

Quantile: Before the use of RNA-Seq experiments was common, a huge body of work was
developed for the analysis of microarray data. Quantile normalization is the result of applying a
normalization method used in microarray analysis to RNA-Seq data. The basic algorithm is as
follows, and is designed to make use of the fact that data vectors with the same distribution will
have their quantiles plotted on the diagonal, by forcing the normalized data to have quantiles on
the diagonal and hence have the same distribution [28]:

1. Sort each column of the read count matrix; this causes each row to contain the same quantiles
of each sample.

2. Replace each entry in the sorted read count matrix with the mean of that row.

3. Undo the sorting on the read count matrix, so that the entries are now back in the original
order.

Using this algorithm, the read count matrix has been normalized so that each sample is forced to
have the same distribution over all the genes. Other measures such as the median could be used in
place of the mean of the quantiles.

Upper Quartile: Upper quartile normalization [10] is similar to quantile normalization but
focuses on one speci�c quantile (the 75th percentile). In upper quartile normalization, each read
count is divided by the 75th percentile of the read counts in its sample, where genes with read
counts of 0 across all samples are excluded. Zyprych-Walczak et al. [16] also report a variant of
Upper Quartile normalization in a rather complicated form that ultimately reduces to scaling each
Upper Quartile normalization factor by the geometric means of the Upper Quartiles, so that the
product of the normalization factors is 1.
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Median: Median normalization [9] is essentially the same as Upper Quartile normalization,
except that gene counts are scaled by the median of counts in their sample rather than the 75th

percentile.

DESeq: The DESeq normalization strategy attempts to �nd a size factor for each sample, such
that the ratios of size factors of di�erent samples represent the ratio of their respective sequencing
depths. Let kij be the number of reads aligned to gene i under sample j. The estimated size factor
ŝj for sample j is given by

ŝj = mediani
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kiv
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9>>>=
>>>;

where m is the total number of samples, across all conditions. The denominator

�
mQ
v=1

kiv

�1=m

serves as a pseudo-reference sample to which each sample can be compared. As discussed in [24],
the rational behind the size factor estimation is that a good estimate for the ratio of sequencing
depths of two samples should be the median of the ratios of their counts. This is generalized to
multiple samples through the use of the pseudo-reference sample.

Cu�Di�: Introduced by Trapnell et al. [43] as part of the Cu�Di� 2 software, the Cu�Di� nor-
malization method is a slight modi�cation of the DESeq method. The Cu�Di� approach calculates
two di�erent normalization factors: an internal scale is used when comparing samples taken under
the same biological conditions, while an external scale is used to compare samples across di�erent
biological conditions.

Calculation of the internal scale is simply a restriction of the DESeq normalization method to
the read count sub-matrix for each set of replicates; in an experiment with two conditions A and
B and three replicates per condition, for example, the DESeq method would be applied to both
groups of replicates separately, taking three columns of the matrix with each application.

The external scale is calculated after the internal scale; in the case of 2 samples per condition and
two conditions, the result would be 4 size factors. Let ŝj denote the internal size factor for sample
j. We then use the internal size factors to normalize each column (divide by the corresponding
internal size factor). For each gene and each condition, we average the internal-scaled counts for the
replicates in that gene and condition; let ki;A and ki;B denote these averages for gene i in the case
of two conditions. That is, with kij again denoting the (i; j) entry of the full read count matrix,

ki;A =
1

mA

X
j:�(j)=A

kij
ŝj

and likewise for ki;B, where mA is the number of samples performed under condition A and �(j)
denotes the condition under which sample j was performed. We then use the ki;�(j) values to
produce external size factor estimates

�j = mediani
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where c is the number of conditions. To compare internal-scaled counts across di�erent conditions
(such as for DE testing), we adjust the internal-scaled counts using the external scale.

TMM: TMM (Trimmed Mean of the M-values) [7] is a normalization strategy with a very
similar approach to the DESeq size-factor estimate. TMM sets one of the samples as a reference
sample, then compares the counts in each sample to the reference sample to estimate the ratio of
sequencing depths between each sample and the reference. The procedure involves trimming genes
twice, using both the fold-changes and expression levels between samples; the goal is to remove
genes that are di�erentially expressed, so that the mean can be taken over genes that do not show
di�erential expression. For these genes, we expect that the ratio of counts in one sample to the
reference sample is represented by the ratio of the sequencing depths.

Let kij again denote the number of reads aligned to gene i under sample j. Let �ij be the true
gene expression level of gene i under sample j, and Nj the total number of reads for sample j,

i.e. the library size

�
Nj =

P
i
kij

�
. Fixing one of the samples r as the reference sample, we de�ne

gene-wise log fold changes

M r
ij = log2

kij=Nj
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and absolute expression levels
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For sample j, the M r
ij and Ar

ij values are trimmed independently (the default amount trimmed is
30% for the M r

ij and 5% for the Ar
ij) to produce a set of genes G for which neither the M r

ij nor

Ar
ij value was removed (trimmed). Using this set G, we calculate the scaling factor TMM

(r)
j for

sample j via a weighted mean:
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:

Note that in the calculation of the scaling factors, we divide by the library size of each sample

(Nj). Thus, the TMM
(r)
j scaling factors tell us the relative size of samples after we have normalized

by library size, and to normalize so that read counts are directly comparable between samples we

would divide each sample by TMM
(r)
j �

Nj

Nr
where Nr is the library size of the reference sample.

Median Ratio: Similarly to how Cu�Di� normalization extends the DESeq normalization
procedure, Median Ratio normalization (MRN) [14] is designed to be a more robust adaptation of
the TMM method. As in the TMM method, de�ne kij to be the number of reads aligned to gene
i under sample j and Nj the number of reads in sample j (its library size). And like the TMM
method, the MRN method separates library size normalization and normalization of the samples
after dividing by library size. Here, as in [14], we will describe MRN in the special case where there
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are two experimental conditions A and B, although the method can be generalized to more than
two conditions.

MRN begins by taking the mean of library-normalized counts for each gene within each condi-
tion:

kiA =
1

mA

X
j:�(j)=A

kij
Nj

would de�ne this mean for condition A, and the de�nition is analogous for condition B. Then, we
calculate the ratio �i of these two means for each gene i:

�i =
kiB

kiA
:

We de�ne � to be the median of these ratios across all genes. The intuition is that between two
samples of the same experimental condition, the di�erence in sequencing depth can be determined
directly by the di�erence in library size since there are no genes which can be di�erentially expressed
within the same biological condition. Then, normalization by library size puts samples within the
same condition on the same scale. Any remaining di�erences in normalized read counts within a
replicate group are then due to randomness, and so we can remove some of that natural variability
by averaging across samples within a replicate group. Then, � represents the median relative size
of samples under each condition after accounting for library size; to get the normalization factor
for the original read count matrix, we include the library size:

ej =

(
Nj if �(j) = A

� �Nj if �(j) = B

Then, dividing each column of the original read count matrix by its corresponding normalization
factor will allow for direct comparison of reads across di�erent samples and conditions. The �nal
step is to make the product of the normalization factors be 1 by dividing by their geometric mean,
which does not change the relationship between them but ensures that the normalized read counts

will be on a similar scale as the originals. Let ~f =

�
mQ
v=1

ev

�1=m

where m is the total number of

samples across all conditions. Then, the �nal normalization factor for sample j is

fj =
ej
~f

PoissonSeq: The information for normalization is found in the non-di�erentially expressed
genes. TMM explicitly aims to remove di�erentially expressed genes through trimmed means,
leaving the non-DE genes as the set of genes used in estimates. Methods like Upper Quartile
normalization, DESeq, and MRN address the issue by examining a quartile of the data, or a
transformed version of the data, that is expected to be reasonably representative of the non-
di�erentially expressed genes. In the PoissonSeq method [30], developed as part of the PoissonSeq
package, the idea of using the non-di�erentially expressed genes is taken a step further by directly
performing a goodness-of-�t test to try to �nd a subset of non-di�erentially expressed genes.

Let Kij be the random variable for the number of reads aligned to gene i under sample j. It
is assumed in the PoissonSeq package that Kij � Poisson(�ij), although for the purposes of the
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normalization technique the most salient point is using �ij to denote the expectation of Kij , and
the actual distribution of Kij is less important for normalization than for performing tests for
di�erential expression. We model �ij using

log(�ij) = log(dj) + log(�i) + 
i;�(j)

where dj is the sequencing depth for sample j, �i is the level of expression of gene i, and 
i;�(j)
represents how associated the expression of gene i is with the condition �(j) of sample j. If 
i is 0
for all conditions, then there is no association between the expression of gene i and the biological
conditions and hence gene i is not di�erentially expressed in the study. Under the null hypothesis
that there is no association between gene i and the condition of sample j, 
i;�(j) = 0.

We estimate the expression level of gene i as �̂i =
mP
v=1

kiv where m is the total number of

samples across all conditions. Since sequencing depth can be compared across samples using non-
di�erentially expressed genes, given a set S of non-di�erentially expressed genes we can compute an
estimate for the sequencing depth of sample j by the proportion of reads aligned to non-di�erentially
expressed genes that come from sample j:

d̂j =

P
i2S

kij
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i2S

�
mP
v=1

kiv
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kijP
i2S

�̂i
:

For genes in S, 
i;�(j) = 0 and so log(�ij) = log(dj�i). Hence, an estimate for E(kij) is d̂j �̂i
and we can create a goodness-of-�t statistic for each gene i:

GOFi =
mX
v=1

(kij � d̂j �̂i)
2

d̂j �̂i
:

We ultimately want a good estimate of dj , which means we want to identify S. To do so, we start
with an initial estimate of dj using the entire set of genes as S, then calculate GOFi statistics and

take the middle (1 � 2") � 100% and re-calculate d̂j . We then alternate between estimating S and
dj until convergence. By default, PoissonSeq uses " = 0:25. The �nal sequencing depth estimates

d̂j are then scaled so that their product is 1.

DEGES: This normalization approach [11], which stands for Di�erentially Expressed Gene
Elimination Strategy, has a very similar approach to PoissonSeq. It alternates between estimating
normalization factors and using those normalization factors to determine which genes are dif-
ferentially expressed. We will describe the algorithm without relying on a speci�c strategy for
normalization or testing.

1. Using all genes in the experiment, calculate normalization factors for each sample. For exam-
ple, if we used DESeq normalization, we would calculate the median of the relative expression
values across all genes.

2. Using the normalization factors from Step 1, perform di�erential expression hypothesis testing
and identify a set of non-di�erentially expressed genes.

3. Re-calculate normalization factors using the set of genes identi�ed in Step 2.
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The algorithm alternates between Steps 2 and 3 a prespeci�ed number of times, the idea being to
iteratively improve normalization. The �nal normalization factors can then be used in an o�cial
di�erential expression analysis.

Housekeeping Genes: If one can identify a priori a set of non-DE genes, these could be
used for normalization purposes. For example, Bullard et al. [10] investigates the use of house-
keeping genes, speci�cally POLR2A, to perform normalization. With one gene, all read counts
in a sample are scaled by a single factor, so that after normalizing each sample the read counts
for the housekeeping gene are the same across all samples. With multiple housekeeping genes,
typical normalization methods can be applied to the set of housekeeping genes rather than to all
genes. For example, DESeq normalization could be applied to the read count matrix restricted to
the housekeeping genes, then the size factor estimates obtained would be applied to normalize the
entire read count matrix as usual.

Spike-in Controls: As with housekeeping genes, typical normalization methods like Upper
Quartile and DESeq can be applied to only the spike-in controls [33], producing normalization
factors that are then applied to all genes. Another spike-in method was proposed by Lov�en et al.,
who used loess normalization to normalize the RPKM values for all genes to the spike-in RPKM
values [22]. As in Lov�en et al. [22], spike-in normalization typically requires that the spikes be
added in proportion to the number of cells from which the sample RNA is extracted [23]; this
ensures that the spikes will have the same RNA/cell in each condition. Changes in the proportion
of reads aligned to the spikes in a sample then indicate changes in the amount of mRNA/cell for
the genes, which can be re
ected in the read counts by adjusting counts to equilibrate the spike-in
counts across samples (see Figure 4).

Loess normalization, originally developed to normalize microarray intensities, can also be ap-
plied to normalize RPKM values. The method works as follows [22,28], and compares two samples
at a time. First, M and A values for each gene/spike-in i are calculated between samples j and k
(similar to the M-A values calculated in TMM):

Mi = log2

�
RPKMij

RPKMik

�

Ai =
1

2
log2 (RPKMij �RPKMik)

Consider the Mi values for the spike-ins. Since the spike-ins should be non-DE, then we would
expect eachMi value to be 0. Thus, we want to adjust theMi values so that when we plot adjusted
Mi against Ai, the adjusted Mi values are scattered around 0. To do so, plot the Mi against Ai for
the spikes and �t a loess curve to the data (note that the loess curve is �t only with the spike-ins);
let M̂i be the �tted value on the curve for each gene/spike. Then, the adjusted Mi value is

M 0

i =Mi � M̂i:

All genes, not just the spike-ins, are adjusted in this way. Since the loess curve was calculated
using only the spike-ins, M 0

i for the spike-ins will be centered around 0 as desired, but we avoid
centering all genes around 0 and so are still able to detect shifts in expression.

To calculate the re-normalized values, RPKM 0

ij and RPKM 0

ik,

RPKM 0

ij = 2Ai+
M

0

i

2

RPKM 0

ik = 2Ai�
M

0

i

2 :
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Re-normalized RPKM values are calculated for each pair of samples, then the original RPKM val-
ues are corrected using each of the pairwise corrections.

Remove Unwanted Variation: Adapted from previous work on normalization of microar-
ray data, the Remove Unwanted Variation [33] (RUV) method aims to remove variation between
samples that is not the result of the biological covariates of interest. The notation associated with
this method will di�er from that used in the other normalization procedures described above, as
the method is su�ciently complicated that it is easiest to communicate by being consistent with
the original paper.

Suppose an RNA-Seq experiment is performed with J genes and n samples, and p covariates of
interest. We will restrict our examination of this method to the classic case of a di�erential study
with two conditions. In this case, p = 2.

� Let Y 2 Mn�J be the read count matrix, so Yij corresponds to the number of reads aligned
to gene j in sample i.

� Let X 2 Mn�p denote the design matrix for the experiment. In our restricted case, the design
matrix has a column for the intercept and each entry in the second column is an indicator
for whether the sample corresponding to that row is under condition A or condition B.

� Let W 2 Mn�k be a matrix related to k factors of unwanted variance (k must be speci�ed
beforehand).

� Let � 2 Mk�J be the coe�cients corresponding to the factors of unwanted variance in W .

� Let � 2 Mp�J be the coe�cients which represent the relationship between each gene and each
covariate of interest.

� Let O 2 Mn�J be a matrix re
ecting sequencing depth o�sets; the authors suggest using
Upper Quartile normalization, though of course other methods would also work in its place.

Then, we assume the log-linear model

logE[Y jW;X;O] =W�+X� +O: (1)

The RUV method provides three di�erent sub-procedures to approach normalization given this
model, with varying assumptions. RUVg uses that a set of negative control genes (which can be
spike-in controls) is known. RUVr uses the residuals of a �rst-pass �t to the log-linear model in
Equation (1) and does not require knowledge of negative control genes, though does assume that
the factors of unwanted variation are uncorrelated with the biological conditions. RUVs creates
negative control samples by comparing samples within replicate groups, and also relies on negative
control genes and the factors of unwanted variation being uncorrelated with the biological conditions
in the experiment. The di�erence between RUVs and RUVg is that RUVs is designed to be more
robust to the choice of negative control genes, and the authors state that the method can still
perform reasonably even when the entire set of genes is used.

The three RUV paths are reasonably similar, and so for sake of brevity only one (RUVg) will
be described here; notation is borrowed from Risso et al. [33]. We begin by assuming that there is
a set of Jc negative control genes. When the matrices in Equation (1) are restricted to the negative
control genes, we will use the subscript c.
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1. De�ne Zc = log Yc � Oc, so that we have accounted for o�sets in the experimental data.
This should make samples of di�erent sequencing depths comparable. Then let Z�

c be the
column-centered version of Zc. After accounting for sequencing depth, the only variation of
negative control genes across samples is from factors of unwanted variation. By subtracting
the mean of each column, the measurement of the expression of each gene in Z�

c is centered at
0, which also allows the intercept term to be 0 in �c. Since none of the genes are associated
with the biological covariates of interest, the other coe�cients in �c will be 0 as well, yielding
Z�

c =W�c.

2. Next, perform the singular value decomposition of Z�

c , so Z
�

c = U�V T where � is the rect-
angular diagonal matrix of singular values of Z�

c .

3. For a given number k of factors of unwanted variation, we are interested in determining the
impact of those factors so we reduce to only the k largest singular values. Denote by �k

the n � Jc matrix obtained from � by setting all singular values but the k largest to 0. We
estimate W by Ŵ = U�k where we have removed columns of 0s to ensure that Ŵ 2 Mn�k.
Under the assumption that the factors of unwanted variation for the negative control genes
span the same space as the factors of unwanted variation for all genes (in the linear algebra
sense, since columns of W are factors of unwanted variation and W� is a linear combination
of the columns of W ), then Ŵ will estimate W .

4. Substituting Ŵ back into Equation (1), and with knowledge of the design matrix X, GLM
regression can be used to estimate the remaining parameters � and �, and then di�erential
expression analysis can be performed. Though the authors do not recommend obtaining
normalized counts separately from the di�erential expression analysis procedure, it is possible
to use RUVg to normalize by performing OLS regression of Z = log Y �O on Ŵ . The residuals
of this regression are the normalized read counts.

We also present some intuition to further explain RUVg. We don't care aboutW or � separately,
as the normalization considers only their product W�. As W� is a linear combination of the
columns of W , then W� could be represented in�nitely many ways by replacing the columns of W
with another set of vectors spanning the same space and replacing � by the correct coe�cients to
get the same linear combination with the new spanning set. Hence, if we assume that the factors of
unwanted variation for the negative control genes span the same space as the factors of unwanted
variation for all genes, then W can be calculated using only the negative control genes since we
just need to span the same space rather than get exactly the same matrix.

KEY POINTS
� Assumptions allow normalization to translate raw read counts into meaningful measures of
expression.

� The correct normalization method to use depends on which assumptions are valid for the
biological experiment.

� Incorrect normalization leads to problems in downstream analysis, such as in
ated false pos-
itives, that mean results cannot be trusted.

� No normalization method is perfect, and for every method there exists cases for which the
assumptions are violated. There are examples of global shifts in expression that violate
assumptions of conventional normalization methods, requiring controls.
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� An understanding of assumptions can help pick the most suitable normalization method for
a given experiment.
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